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Abstract

Vibration modes of a finite-length Timoshenko beam are studied as standing waves using the wave-train
closure principle, in order to obtain a complete picture of various vibration modes in a beam and to
understand the mechanism of their formulations. In particular, the existence of degenerate modes in a beam
is investigated. Firstly, it is shown that the two degenerate flexural waves accommodated by an infinite
Timoshenko beam are derived from the in-phase and the out-of-phase relations between transverse
vibrations due to bending and shear deformations, respectively. A wave representation of beam vibration is
thus developed. Secondly, wave reflection behavior at an elastically supported boundary is analyzed. It is
shown that while these two waves are degenerate in an infinite beam, they have to be superposed at the
boundary in general, but remain degenerate for certain special boundary conditions. Based on these results,
the expression of wave-train closure principle for a finite-length Timoshenko beam is derived, and used to
study different standing waves in a beam. It is shown that three types of standing waves (vibration modes)
exist in Timoshenko beams, namely, superposed, degenerate, and single. A condition of space
synchronization must be satisfied for superposed standing waves. For the other two types of standing
waves, this condition is satisfied naturally. While the superposed standing wave is the most general form of
vibration mode, vibration modes of elastically supported beams at specific frequencies or beams with
sliding and/or simply supported boundary conditions are single standing waves. When additional
conditions are satisfied, two single standing waves could exist at the same natural frequency to formulate
degenerate standing waves.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Free vibration is usually treated by the mode approach as an eigenvalue problem; however,
more physical understanding could be obtained by using the wave propagation approach. In the

ARTICLE IN PRESS

*Corresponding author. Fax: +852-2365-4703.

E-mail address: mmmcso@polyu.edu.hk (R.M.C. So).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.12.012



wave propagation approach, the wave-train closure principle [1] gives the condition for a
propagating wave to formulate a standing wave. The principle states that, in order to formulate a
standing wave (vibration mode), a propagating wave must return to its starting point after
completing one complete circuit of the system with the same amplitude and phase, i.e., it closes on
itself.
This principle was also termed the phase closure principle and has been applied to free vibration

analysis of Euler–Bernoulli beams [2]. According to Euler–Bernoulli theory, there are one
propagating wave and one evanescent wave in an infinite beam with the same wave number at a
given frequency. Mead [2] showed that each of these two waves could be used in the wave-train
closure principle, leading to the same frequency equation.
Two waves sharing the same wave number is the result of ignoring the effect of shear

deformation in the Euler–Bernoulli beam model. This approximation leads to a physically
incorrect dispersion behavior [3]. The effects of rotary inertia and shear deformation were
considered by Timoshenko [4,5]. According to the Timoshenko theory, beam vibration is
described by a vector sðz; tÞ ¼ fwðz;tÞ

fðz;tÞg; where wðz; tÞ is transverse displacement and fðz; tÞ is the
bending rotation, which is related through the shear deformation, gðz; tÞ; as @w=@z ¼ fþ g [6].
Wave propagation in an infinite Timoshenko beam has been analyzed by Mead [7] in an

attempt to understand energy transmission associated with propagating waves and the behavior
of wave reflection and transmission at a constraint in an infinite beam. Chan et al. [8] showed that
Timoshenko beam vibration is a phenomenon of superposed standing waves; the two waves
predicted by the Euler–Bernoulli beam theory are actually two types of wave with different wave
number at a given frequency, corresponding to the first two flexural waves predicted by the exact
theory of elasticity. These two types of wave were termed the ka- and the kb-waves in Ref. [8],
respectively; the former is translation-dominated with anomalous dispersion behavior, and the
latter is rotation-dominated with normal dispersion behavior.
From the point of view of wave mechanics, these two waves in an infinite Timoshenko beam are

said to be degenerate, that is, they exist at the same frequency but do not interact with one another
in free space. Interactions can only occur at boundaries or discontinuities. For a finite beam with
general elastic supports at the ends, in order to satisfy the boundary conditions, these two waves
have to be superposed to formulate a vibration mode. For the simply supported beam, however,
these two waves are found to be separated and each formulates a vibration mode, resulting in the
so-called ‘second spectrum’. This suggests that there may exist different modes in a finite-length
Timoshenko beam, and their formulation is related to the effect of boundaries on the degeneracy
of the two waves.
In this paper, the expression of wave-train closure principle for a Timoshenko beam is

examined in an attempt to understand the mechanism for the formulation of superposed and
separated vibration modes, thus obtain a complete picture of various standing waves in a beam.
The emphasis is on whether and under what conditions degenerate modes exist in a Timoshenko
beam.
Instead of using the conventional vector sðz; tÞ ¼ fwðz;tÞ

fðz;tÞg to describe Timoshenko beam
vibration, the vector of bending and shear displacements, wðz; tÞ ¼ fwfðz;tÞ

wgðz;tÞ
g; where wfðz; tÞ and

wgðz; tÞ are transverse displacements due to bending rotation fðz; tÞ and shear angle gðz; tÞ;
respectively, is used to represent beam vibration in order to investigate the role of shear
deformation in differentiating the ka- and the kb-waves. Wave reflection at a general elastically
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supported boundary is then analyzed to demonstrate the effect of boundary conditions. Classical
boundary conditions are also considered as limiting cases of the elastically supported boundary
condition. While it has been shown by Mead [7] that an incident ka- or kb-wave will in general
generate both types of waves upon reflection, the condition at which an incident wave generates a
reflected wave of its own type is sought in the present paper. Based on this investigation of wave
reflection, the expression of wave-train closure principle for an elastically supported Timoshenko
beam, including classical boundary conditions as limiting cases, is derived to study all possible
forms of standing waves.

2. Waves in an infinite Timoshenko beam

The wave equation for an infinite Timoshenko beam shown in Fig. 1 can be written as

Dw ¼
0

0

( )
; ð1Þ

where w is a vector representing Timoshenko beam vibration, and D is the corresponding operator.

As mentioned in the Introduction, instead of the conventional expression wðz; tÞ ¼ fwðz;tÞ
fðz;tÞg; w is
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Fig. 1. Illustration of the win- and the wout-waves in an infinite beam and the definitions of the quantities describing

beam motion in Eq. (1). (a) win-wave, (b) wout-wave.
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expressed as wðz; tÞ ¼ fwfðz;tÞ
wgðz;tÞ

g in the present study, where wfðz; tÞ and wgðz; tÞ are transverse

displacements due to bending rotation, fðz; tÞ ¼ @wfðz; tÞ=@z; and shear angle, gðz; tÞ ¼ @wgðz; tÞ=@z;
respectively. Fig. 1 gives an illustration of a beam element showing the definitions of these
quantities. These two expressions are related by the following transformation:

wðz; tÞ

fðz; tÞ

( )
¼

wfðz; tÞ þ wgðz; tÞ

@wfðz; tÞ=@z

( )
¼

1 1

@=@z 0

 !
wfðz; tÞ

wgðz; tÞ

( )
:

The operator D, accordingly, is given by

D ¼
m

@2

@t2
m

@2

@t2
� KGA

@2

@z2

EI
@3

@z3
� J

@3

@z@t2
KGA

@

@z

2
664

3
775; ð2Þ

where m ¼ rA and J ¼ rI are the mass and the mass moment of inertia per unit length of the
beam, respectively; r is the density, I and A are the second moment of area and the cross-sectional
area, respectively, E and G are Young’s modulus and shear modulus, respectively, and K is the
shear coefficient.
The general solution of the wave equation can be assumed as

þwðz; tÞ ¼
þwfðz; tÞ

þwgðz; tÞ

( )
¼ þWf0

þWg0e
iy

( )
eiðot�kzÞ ð3aÞ

for the forward propagating wave, and

�wðz; tÞ ¼
�wfðz; tÞ

�wgðz; tÞ

( )
¼ �Wf0

�Wg0e
iy

( )
eiðotþkzÞ ð3bÞ

for the backward propagating wave, where 7Wf0 and 7Wg0 are the amplitudes of transverse
displacements due to bending rotation and shear deformation, respectively, o is frequency, k is
the wave number, and y is the phase difference between 7wfðz; tÞ and 7wgðz; tÞ: Substituting the
assumed solution Equations (3a) and (3b) into Eq. (1) gives

�mo2 �mo2 þ KGAk2

�iEIk3 þ iJo2k iKGA � k

" #
þWf0

þWg0e
iy

 !
¼

0

0

 !
; ð4aÞ

�mo2 �mo2 þ KGAk2

iEIk3 � iJo2k �iKGA � k

" #
�Wf0

�Wg0e
iy

 !
¼

0

0

 !
: ð4bÞ

It is not difficult to deduce that

sin y ¼ 0 thus y ¼ 0 or p: ð5Þ

This suggests that 7wgðz; tÞ is either in-phase or out-of-phase with respect to 7wfðz; tÞ: For both
the in-phase and the out-of-phase cases, however, the same dispersion relations are deduced from
Eqs. (4a) and (4b), written as

k ¼ 0; ð6aÞ
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k4 �
J

EI
þ

m

KGA

 �
o2k2 �

o2m

EI
�

o4mJ

EI � KGA

 �
¼ 0: ð6bÞ

Eq. (6a) represents the rigid-body motion of the beam, thus not considered here. The solutions
of Eq. (6b) are written as [8]

k2
a ¼

o2

2c2o
þ

o2

2c022

 �
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2o
�

o2

c022

 �2

þ
4o2

c2or2g

vuut ; ð7aÞ

k2
b ¼

o2

2c2o
þ

o2

2c022

 �
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c2o
�

o2

c022

 �2

þ
4o2

c2or2g

vuut ; ð7bÞ

where rg ¼
ffiffiffiffiffiffiffiffiffi
I=A

p
; co ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
; c02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KG=r

p
: The wave solution associated with ka was termed

the ka-wave, while the wave solution associated with kb the kb-wave [8]. From Eqs. (7a) and (7b),
the phase speeds of the ka- and the kb-waves are obtained as

c2pa ¼
2

ð1=c2o þ 1=c022 Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c2o � 1=c022 Þ

2 þ 4=ðc2or2go2Þ
q ; ð8aÞ

c2pb ¼
2

ð1=c2o þ 1=c022 Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c2o � 1=c022 Þ

2 þ 4=ðc2or2go2Þ
q : ð8bÞ

It can be deduced that ðc2pa=c022 Þo1 and ðc2pb=c022 Þ > 1:
For the in-phase case, the amplitude of the displacement vector w is given by

7W
in ¼ 7

Win
f0

7
Win

g0

 !
; ð9Þ

where 7W
in
g0 ¼7 Win

f0=½ðc
0
2=cpÞ

2 � 1�; and the superscript ‘in’ represents ‘in-phase’. From Eqs. (8a)
and (8b), it is not difficult to see that 7W

in
g0 ¼7 Win

f0=½ðc
0
2=cpÞ

2 � 1� > 0 for the ka-wave while

7W
in
g0 ¼ 7W

in
f0=½ðc

0
2=cpÞ

2 � 1�o0 for the kb-wave. Since the amplitudes are positive, it can be
concluded that only the ka-wave is the solution of the in-phase case. Therefore, it would be more
appropriate to term the ka-wave as the w

in-wave, written as

7w
in ¼

ra

1

( )
ð7W

in
g0Þe

iðot8kazÞ ¼
ra

1

( )
ð7win

g Þ; ð10Þ

where ra ¼ ðc02=cpaÞ
2 � 1 > 0: One can see that the displacements due to bending and shear are not

independent but related through the parameter ra: Consequently, this wave is characterized by

7win
g ðz; tÞ:
Analogously, for the out-of-phase case, the amplitude of the displacement vector w is given by

7W
out ¼ 7

Wout
f0

�7W
out
g0

 !
; ð11Þ
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where 7W
out
g0 ¼7 Wout

f0 =½1� ðc02=cpÞ
2�; and the superscript ‘out’ represents ‘out-of-phase’. From

Eqs. (8a) and (8b), it can be deduced that 7W
out
g0 ¼7 Wout

f0 =½1� ðc02=cpÞ
2�o0 for the ka-wave, while

7W
out
g0 ¼7 Wout

f0 =½1� ðc02=cpÞ
2� > 0 for the kb-wave. Therefore, the out-of-phase case leads to the

kb-wave only. The kb-wave is thus denoted as the wout-wave and expressed as

7w
out ¼

rb

1

( )
ð�7W

out
g0 Þe

iðot8kbzÞ ¼
rb

1

( )
ð7wout

g Þ; ð12Þ

where rb ¼ ðc02=cpbÞ
2 � 1o0: Similarly, the displacements due to bending and shear are not

independent but related through the parameter rb; and this wave can thus be characterized by

7w
out
g ðz; tÞ:
The win-wave propagates in the whole frequency spectrum, but the wout-wave only propagates

when a critical value of frequency is exceeded. The critical frequency is determined by the shear
rigidity and the radius of gyration, expressed as oc ¼ c02=rg: Below this critical frequency, the wout-
wave is non-propagating, i.e., evanescent. An evanescent wave can be treated as a special case of a
propagating wave. Therefore, at each frequency in the whole spectrum, a win- and a wout-wave co-
exist in an infinite beam. These two waves are said to be degenerate, and it is appropriate to
express these degenerate waves as

7wd ðz; tÞ ¼ 7
win
g ðz; tÞ

1

0

 !
7wout

g ðz; tÞ
0

1

 !( )

¼ ð7W
in
g0Þe

8ikaz
1

0

 !
ð�7W

out
g0 Þe

8ikbz
0

1

 !( )
eiot; ð13Þ

where the subscript ‘d’ represents ‘degenerate’.

3. Wave reflection at an elastically supported boundary

The application of wave-train closure principle requires the understanding of wave reflection at
the boundaries and wave propagation along the beam. In this section, wave reflection at a general
elastically supported boundary is considered. The boundary is located at the position z ¼ 0 as
shown in Fig. 2 and the boundary conditions are expressed as

Kz0 Kz0 þ KGA
@

@z

EI
@2

@z2
� Tz0

@

@z
0

0
BB@

1
CCA wfðzÞ

wgðzÞ

 !��������
z¼0

¼
0

0

 !
; ð14Þ

where Kz0 and Tz0 are translational and rotational spring constants at the boundary. As a first
attempt, consider wave reflection at the right-side boundary of the beam as shown in Fig. 2a,
where a forward-propagating wave is incident and a backward-propagating wave is reflected.
In the formulation of a standing wave, all the waves involved must have the same frequency.

Therefore, only a pair of degenerate win- and wout-waves at the same frequency is considered in the
following.
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3.1. Superposition of win- and wout-waves upon reflection

In a general case of wave reflection, it is known that an incident wave would induce reflected
waves of all types. A Timoshenko beam accommodates two types of waves, win- and wout-waves,
thus an incident win- or wout-wave induces reflected waves of both types at a boundary in general,
as pointed out by Mead [7]. For an incident win-wave, the wave reflection can be written as

þw
in
g

0

( )
) �w

in
g

�w
out
g

( )
: ð15Þ

The reflected waves can be expressed as

�w
in
g

�w
out
g

( )
¼

r11RðþW
in
g0Þe

ikaz

r21RðþW
in
g0Þe

ikbz

( )
; ð16Þ

where r11R; r21R are wave reflection coefficients. Similarly, for an incident wout-wave, the wave
reflection can be written as

0

þw
out
g

( )
) �w

in
g

�w
out
g

( )
: ð17Þ

The reflected waves are given by

�w
in
g

�w
out
g

( )
¼

r12Rð�þW
out
g0 Þe

ikaz

r22Rð�þW
out
g0 Þe

ikbz

( )
; ð18Þ

where r12R; r22R are wave reflection coefficients.
Once a standing wave is formulated, both types of wave are present at the boundary. Wave

reflection is thus represented by the combination of Eqs. (15) and (17), written here as

ðþw
in
g Þ

ðþw
out
g Þ

( )
)

ð�w
in
g Þ

ð�w
out
g Þ

( )
: ð19Þ

The reflected waves are expressed as

ð�w
in
g Þ

ð�w
out
g Þ

( )
¼ RR

ðþW
in
g0Þe

ikaz

ð�þW
out
g0 Þe

ikbz

( )
¼

r11R r12R

r21R r22R

 !
ðþW

in
g0Þe

ikaz

ð�þW
out
g0 Þe

ikbz

( )
: ð20Þ
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Fig. 2. Wave reflection at a general elastically supported boundary. (a) Right-side boundary, (b) left-side boundary.
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The wave reflection matrix RR is determined from the boundary conditions, written as

RR ¼
r11R r12R

r21R r22R

 !
¼ �f½�R�g

�1½þR�; ð21Þ

where

½þR� ¼
ðraþ1ÞKz0�ikaKGA

�raðk2aEI�ikaTz0 Þ

ðrbþ1ÞKz0�ikbKGA

�rbðk
2
b

EI�ikbTz0 Þ

 �
; and ½�R� ¼

ðraþ1ÞKz0þikaKGA

�raðk2aEIþikaTz0 Þ

ðrbþ1ÞKz0þikbKGA

�rbðk
2
b

EIþikbTz0 Þ

 �
:

This matrix is not diagonal, showing that the two waves interact in the reflection process at the
boundary.

3.2. Condition for the waves to remain degenerate upon reflection

Since the win- and the wout-waves are degenerate before and after reflection, it would
be of interest to investigate whether and under what condition they remain degenerate upon
reflection. By ‘‘remain degenerate upon reflection’’, it means that win- and wout-waves reflect
at the boundary independently. In other words, the superposition of the incident and the
reflected waves ðþw

in
g þ� win

g Þ and ðþw
out
g þ� wout

g Þ satisfy the boundary conditions individually.
This yields

Kz0 Kz0 � ikaKGA

�k2
aEI þ ikaTz0 0

 !
ra

1

 !
þ

win
g ð0Þ

þ
Kz0 Kz0 þ ikaKGA

�k2
aEI � ikaTz0 0

 !
ra

1

 !
�

win
g ð0Þ ¼

0

0

 !
ð22aÞ

and

Kz0 Kz0 � ikbKGA

�k2
bEI þ ikbTz0 0

 !
rb

1

 !
þ

wout
g ð0Þ

þ
Kz0 Kz0 þ ikbKGA

�k2
bEI � ikbTz0 0

 !
rb

1

 !
�

wout
g ð0Þ ¼

0

0

 !
: ð22bÞ

From Eqs. (22a) and (22b), the following two equations can be derived:

KGA � EI � ðra þ 1ÞKz0Tz0 ¼ 0; ð23aÞ

KGA � EI � ðrb þ 1ÞKz0Tz0 ¼ 0 ð23bÞ

and they lead to

o2 ¼
Kz0Tz0

KGA � EI
c022 : ð24Þ

Eq. (24) suggests that a win- and a wout-waves remain degenerate during reflection only at a specific
frequency, designated as ospe in the following. In this case, Eqs. (22a) and (22b) can be combined
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and written as

½�R�
�w

in
g

�w
out
g

( )�����
z¼0

þ½þR�
þw

in
g

þw
out
g

( )�����
z¼0

¼
0

0

 !
0

0

 !( )
; ð25Þ

where

½þR� ¼
Iðra þ 1ÞKz0 � ikaKGAm 0

0 ½ðrb þ 1ÞKz0 � ikbKGA�

 !
;

½�R� ¼
Iðra þ 1ÞKz0 þ ikaKGAm 0

0 ½ðrb þ 1ÞKz0 þ ikbKGA�

 !
:

Eq. (25) can be further simplified to

�w
in
g

�w
out
g

( )
¼ RR

þw
in
g

þw
out
g

( )
; ð26Þ

where the wave reflection matrix

RR ¼ r11R
0

0
r22R

� �
¼ �e�iy

in

0
0

�e�iy
out

� �
:

In the matrix, r11R and r22R are wave reflection coefficients for the win- and the wout-waves,
respectively,

yin ¼ 2 arctg
cpa

c022

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tz0 � KGA

EI � Kz0

s !
; yout ¼ 2 arctg

cpb

c022

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tz0 � KGA

EI � Kz0

s !

and the subscript ‘‘R’’ represents ‘‘Right-side boundary’’. The wave reflection matrix is now
diagonal, suggesting that the win- and the wout-waves reflect independently.

3.3. Wave reflection matrices for classical boundary conditions

In the above analysis, Kz0 and Tz0 are assumed to be of finite value. In this section, limiting
cases of the general elastic supports, which correspond to classical boundary conditions as listed
in Table 1, are discussed.
For the free boundary condition, Kz0 ¼ 0 and Tz0 ¼ 0; while for the clamped boundary

condition, Kz0 ¼ N and Tz0 ¼ N: According to Eq. (24), degenerate waves only occur
at 0 and N; respectively. Therefore, for a free or a clamped boundary condition, the waves are
superposed upon the reflection at all frequencies. The simply supported and the sliding
boundary conditions are worthy of further study since Kz0Tz0 is indeterminate in these two cases
(Kz0 ¼ N and Tz0 ¼ 0 for the former while Kz0 ¼ 0 and Tz0 ¼ N for the latter), thus ospe is
indeterminate.
The simply supported boundary conditions are given by

1 1

EI
@2

@z2
0

0
@

1
A wfðzÞ

wgðzÞ

 !������
z¼0

¼
0

0

 !
: ð27Þ
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Assuming the win- and the wout-waves to remain degenerate upon reflection as given by Eq. (22),
superposition of the incident and reflected win- and wout-waves should satisfy the boundary
conditions individually. This yields

1 1

�k2
aEI 0

 !
ra

1

 !
½þw

in
g ð0Þ� þ

1 1

�k2
aEI 0

 !
ra

1

 !
½�w

in
g ð0Þ� ¼

0

0

 !
; ð28aÞ

1 1

�k2
bEI 0

 !
rb

1

 !
½þw

out
g ð0Þ� þ

1 1

�k2
bEI 0

 !
rb

1

 !
½�w

out
g ð0Þ� ¼

0

0

 !
: ð28bÞ

Eqs. (28a) and (28b) can be further reduced to

ðra þ 1Þ ðra þ 1Þ

�raðk2
aEIÞ �raðk2

aEIÞ

 !
þw

in
g ð0Þ

�w
in
g ð0Þ

 !
¼

0

0

 !
; ð29aÞ

ðrb þ 1Þ ðrb þ 1Þ

�rbðk2
bEIÞ �rbðk2

bEIÞ

 !
þw

out
g ð0Þ

�w
out
g ð0Þ

 !
¼

0

0

 !
: ð29bÞ

It can be seen that these two equations hold for all frequencies. Eqs. (29a) and (29b) can then be
written as

½�R�
�w

in
g

�w
out
g

( )
þ ½þR�

þw
in
g

þw
out
g

( )�����
z¼0

¼
0

0

 !
0

0

 !( )
;

�w
in
g

�w
out
g

( )�����
z¼0

¼ �½�R�
�1½þR�

þw
in
g

þw
out
g

( )�����
z¼0

; ð30Þ

where

½�R� ¼
ðra þ 1Þ 0

0 ðrb þ 1Þ

 !
and ½þR� ¼

ðra þ 1Þ 0

0 ðrb þ 1Þ

 !
:

Eq. (30) is identical to Eq. (26), but the wave reflection matrix is now given by

RR ¼ �f½�R�g
�1½þR� ¼ �I: ð31Þ

It can be seen that, upon reflection at a simply supported boundary, the phase is shifted for both
waves by p with the amplitude unchanged at all frequencies.
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Table 1

Classical boundary conditions as limiting cases of general elastic support

Kz0Tz0 Boundary conditions

0 Free

N Clamped

N � 0 (indeterminate) Simply supported

0 �N (indeterminate) Sliding
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The sliding boundary conditions are given by

0 KGA
@

@z

�
@

@z
0

0
BB@

1
CCA wfðzÞ

wgðzÞ

 !��������
z¼0

¼
0

0

 !
: ð32Þ

Following the same procedure, it can be seen that wave reflection at a sliding boundary is still
represented by Eq. (30), but the wave reflection matrix is given by

RR ¼ �f½�R�g
�1½þR� ¼ I: ð33Þ

This shows that the win- and the wout-waves remain degenerate upon the reflection at all
frequencies. However, both the phase and the amplitude are unchanged upon reflection at all
frequencies.
The reflection of a backward-propagating wave impinging on a left-hand boundary is a mirror

image of the forward-propagating wave impinging on a right-hand boundary, so the same
conclusions can be drawn. Table 2 summarizes the wave reflection matrices for various boundary
conditions when reflection occurs at the left or the right side of the boundary.

4. Wave-train closure principle: the formulation of standing waves

4.1. Expression of the wave-train closure principle

In this section, the wave-train closure principle is used to examine all possible vibration modes
of a finite-length Timoshenko beam. The beam is assumed to be of length L with general elastic
supports at both ends, as illustrated in Fig. 3.
The phase and amplitude changes of the waves must now be considered as they propagate along

the beam, in addition to the changes taking place due to reflection at the boundaries. Without loss
of generality, suppose that the wave starts from the location z ¼ Z and propagates in the positive
direction. The complex amplitudes are related by

þw
in
g

þw
out
g

( )�����
z¼L

¼ TZL
þw

in
g

þw
out
g

( )�����
z¼Z

¼
e�ikaðL�ZÞ 0

0 e�ikbðL�ZÞ

 !
þw

in
g

þw
out
g

( )�����
z¼Z

ð34aÞ

for the two waves at z ¼ L and Z;

�w
in
g

�w
out
g

( )�����
z¼0

¼ TL0
�w

in
g

�w
out
g

( )�����
z¼L

¼
e�ikaL 0

0 e�ikbL

 !
�w

in
g

�w
out
g

( )�����
z¼L

ð34bÞ

for the two waves at z ¼ L and 0, and

þw
in
g

þw
out
g

( )�����
z¼Z

¼ T0Z
þw

in
g

þw
out
g

( )�����
z¼0

¼
e�ikaZ 0

0 e�ikbZ

 !
þw

in
g

þw
out
g

( )�����
z¼0

ð34cÞ

for the two waves at z ¼ 0 and Z:
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Table 2

List of wave reflection matrices for various boundary conditions

Elastically supported Elastically supported Simply Sliding

(Superposed at frequencies other than ospe) (Degenerate at ospe) supported

½þR� ½ðra þ 1ÞKz0
� ikaKGA� ½ðrb þ 1ÞKz0

� ikbKGA�
�raðk2

aEI � ikaTz0
Þ �rbðk2

bEI � ikbTz0
Þ

 �
½ðra þ 1ÞKz0

� ikaKGA� 0

0 ½ðrb þ 1ÞKz0
� ikbKGA�

 �
ðra þ 1Þ 0

0 ðrb þ 1Þ

 �
ikara 0
0 ikbrb

 �
½�R� ¼
½þR�

�
½ðra þ 1ÞKz0

þ ikaKGA� ½ðrb þ 1ÞKz0
þ ikbKGA�

�raðk2
aEI þ ikaTz0

Þ �rbðk2
bEI þ ikbTz0

Þ

 �
½ðra þ 1ÞKz0

þ ikaKGA� 0

0 ½ðrb þ 1ÞKz0
þ ikbKGA�

 �
ðra þ 1Þ 0

0 ðrb þ 1Þ

 �
�ikara 0

0 �ikbrb

 �
Right-side

RR

�f½�R�g
�1½þR� �

½ðraþ1ÞKz0�ikaKGA�
½ðraþ1ÞKz0þikaKGA� 0

0 �
½ðrbþ1ÞKz0�ikbKGA�
½ðrbþ1ÞKz0þikbKGA�

0
@

1
A ¼

�e�iy
in

0

0 �e�iy
out

 !-I I

Left-side
RL

�f½þR�g
�1½�R� �

½ðraþ1ÞKz0þikaKGA�
½ðraþ1ÞKz0�ikaKGA� 0

0 �
½ðrbþ1ÞKz0þikbKGA�
½ðrbþ1ÞKz0�ikbKGA�

0
@

1
A ¼

�eiy
in

0

0 �eiy
out

 ! -I I

The subscripts ‘R’ and ‘L’ represent wave reflection at the right- and the left-side boundaries of a beam, respectively.
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The wave propagation matrices are diagonal because the win- and the wout-waves do not
interfere with each other during the propagation along the beam, despite the fact that the waves
could be superposed at the boundary.
As a wave propagates along the whole beam, is reflected at each end, and finally returns to its

starting point to finish one circuit, the returning and starting wave amplitudes are found to be
related by

ðþwjz¼ZÞ ¼ ½T0Z�½R0�½TL0�½RL�½TZL�ðþwjz¼ZÞ; ð35Þ

where ½R0� is the reflection matrix at the left-side boundary z ¼ 0 and ½RL� is the reflection matrix
at the right-side boundary z ¼ L: Expressions for these reflection matrices are given in Table 2.
Eq. (35) can be written in a simplified form as

fI� ½RT�gðþwjz¼ZÞ ¼ 0; ð36Þ

where I is the unit diagonal matrix, and ½RT� ¼ ½T0Z�½R0�½TL0�½RL�½TZL�:
In Eq. (36), it can be seen that while the propagation matrices are the same for degenerate and

superposed waves, expressions of reflection matrices are different. Consequently, the resulting
standing waves will have different forms as demonstrated in the following.

4.2. Degenerate and single standing waves

The existence of degenerate standing waves in a finite-length Timoshenko beam is examined
first. Upon reflection at a boundary, it has been shown that propagating waves remain degenerate
only at the specific frequency

ospe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kz0Tz0

KGA � EI

r
c022 :

For a finite-length beam, wave reflection occur at two boundaries: the wave reflection at z ¼ 0 is a
left-side reflection, where

ospejz¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0T0

KGA � EI

r
c022

and the wave reflection at z ¼ L is a right-side reflection, where

ospejz¼L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KLTL

KGA � EI

r
c022 :
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Fig. 3. Illustration of an elastically supported finite-length beam.

X.Q. Wang, R.M.C. So / Journal of Sound and Vibration 280 (2005) 311–328 323



If a standing wave is to be generated by a single degenerate wave, these two frequencies must be
equal. Hence,

K0T0 ¼ KLTL: ð37Þ

The natural frequency of such a degenerate standing wave is pre-determined as

o2 ¼
K0T0

KGA � EI
c022 ¼

KLTL

KGA � EI
c022 : ð38Þ

However, this is not the only condition for the existence of degenerate standing waves. At z ¼ 0
and L; the wave reflection matrices are given by

R0 ¼ �

½ðra þ 1ÞK0 þ ikaKGA�
½ðra þ 1ÞK0 � ikaKGA�

0

0
½ðrb þ 1ÞK0 þ ikbKGA�
½ðrb þ 1ÞK0 � ikbKGA�

0
BB@

1
CCA ð39aÞ

and

RL ¼ �

½ðra þ 1ÞKL � ikaKGA�
½ðra þ 1ÞKL þ ikaKGA�

0

0
½ðrb þ 1ÞKL � ikbKGA�
½ðrb þ 1ÞKL þ ikbKGA�

0
BB@

1
CCA; ð39bÞ

respectively. The wave-train closure principle yields,

fI� ½RT�g þw
in
g

þw
out
g

( )�����
z¼Z

¼
0

0

 !
; ð40Þ

where I� ½RT� ¼ e�i2kaL

0
0

e�i2kbL

� �
:

If degenerate standing waves exist, jI� ½RT�j ¼ 0: This leads to two equations for win- and wout-
standing waves, respectively. These equations are

kaL ¼ nap; na ¼ 1; 2;y;

kbL ¼ nbp; nb ¼ 1; 2;y : ð41Þ

Since natural frequencies of degenerate standing waves have been determined by Eq. (38), ka and
kb in Eq. (41) are accordingly determined. Therefore, Eq. (41) is not just a frequency equation but
gives an additional condition for the existence of standing waves. If the standing waves remain
degenerate, the two equations in (41) must be satisfied simultaneously, yielding

ka=kb ¼ na=nb; na; nb ¼ 1; 2;y : ð42Þ

Eqs. (37) and (42) combined together give the conditions for the existence of degenerate standing
waves in an elastically supported beam. The natural frequency of the degenerate standing waves is
given by Eq. (38).
If the two equations in Eq. (41) are not satisfied simultaneously, standing waves are still

possible but they belong to a new type. They originate either from win-waves alone or from wout-
waves alone, thus can be termed as single standing waves. For this type of standing waves, it
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would be instructive to write the wave-train closure principle as

½T0Z�½R0�½TL0�½RL�½TZL� �
1 0

0 0

 !( )
þw

in
g

0

 !�����
z¼Z

¼
0

0

 !
ð43aÞ

for win-standing waves, and

½T0Z�½R0�½TL0�½RL�½TZL� �
0 0

0 1

 !( )
0

þw
out
g

 !�����
z¼Z

¼
0

0

 !
ð43bÞ

for wout-standing waves.
Now consider the case of a beam with classical boundary conditions and the two waves remain

degenerate upon reflection over the whole frequency range. According to the previous analysis of
wave reflection, this case includes the simply supported beam, the sliding–sliding beam, and the
beam with one end sliding and the other simply supported. In this case, the wave-train closure
principle is still represented by

fI� ½RT�g þw
in
g

þw
out
g

( )�����
z¼Z

¼
0

0

 !
; ð44Þ

but with different wave reflection matrices.
For a simply supported beam, the reflection matrices are given by R0 ¼ �I and RL ¼ �I; then

I� ½RT� ¼ 1�e�i2kaL

0
0

1�e�i2kbL

� �
: If the standing waves exist, then jI� ½RT�j ¼ 0 and leads to

kaL ¼ nap; na ¼ 1; 2;y;

kbL ¼ nbp; nb ¼ 1; 2;y : ð45Þ

Eq. (45) is exactly the frequency equation of a simply supported beam obtained by using the usual
modal analysis method. It appears to be identical to Eq. (41) for an elastically supported beam.
However, it should be noted that in Eq. (41) the wave numbers have been determined at a specific
frequency. In the present case of a simply supported beam, however, Eq. (45) is a frequency
equation. The wave numbers are determined first, and the natural frequencies are calculated from
the following relations:

o2
a ¼

1

2

KGA

J
þ

KGA

m
þ

EI

J

 �
k2

a

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KGA

J
þ

KGA

m
þ

EI

J

 �
k2

a

 !2
�
4EI � KGA

mJ

s8<
:

9=
;; ð46aÞ

o2
b ¼

1

2

KGA

J
þ

KGA

m
þ

EI

J

 �
k2

b

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KGA

J
þ

KGA

m
þ

EI

J

 �
k2

b

 !2
�
4EI � KGA

mJ

s8<
:

9=
;: ð46bÞ

If the two standing waves are degenerate, then oa ¼ ob; leading to,

r2g ¼
c022 ðc

2
0 þ c022 Þðk

2
a þ k2

bÞ
ðk2

ac20 � k2
bc022 Þðk

2
ac022 � k2

bc20Þ
¼

c022 ðc
2
0 þ c022 Þðn

2
a þ n2bÞ

ðn2ac20 � n2bc022 Þðn
2
ac022 � n2bc20Þðp=LÞ2

: ð47Þ

Therefore, Eqs. (45) and (47) give the conditions for a win- and a wout-standing waves to be
degenerate in a simply supported beam. The standing waves not satisfying the condition given by
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Eq. (47) are not degenerate but belong to single standing waves. They are divided into two groups
of standing waves, one originating from win-waves and the other from wout-waves.

For the sliding–sliding beam, R0 ¼ I and RL ¼ I; thus I� ½RT� ¼ e�i2kaL

0
0

e�i2kbL

� �
: For the beam

with one end sliding and the other simply supported, R0 ¼ I and RL ¼ �I; thus I� ½RT� ¼

�e�i2kaL

0
0

�e�i2kbL

� �
: Eventually, they also lead to Eq. (45), identical to the results for the simply

supported beam. Therefore, the same conclusions can be drawn.

4.3. Superposed standing waves

When K0T0aKLTL; a win- and a wout-waves have to be superposed upon reflection at one or
both boundaries. For the latter case, the reflection matrices are given by

R0 ¼ �f½þR0�g
�1½�R0� at z ¼ 0; ð48aÞ

where ½þR0� ¼
½ðraþ1ÞK0�ikaKGA�
�raðk2aEI�ikaT0Þ

½ðrbþ1ÞK0�ikbKGA�
�rbðk

2
b

EI�ikbT0Þ

 �
;

½�R0� ¼
½ðra þ 1ÞK0 þ ikaKGA� ½ðrb þ 1ÞK0 þ ikbKGA�

�raðk2
aEI þ ikaT0Þ �rbðk2

bEI þ ikbT0Þ

 !
;

RL ¼ �f½�RL�g
�1½þRL� at z ¼ L;

½�RL� ¼
½ðra þ 1ÞKL þ ikaKGA� ½ðrb þ 1ÞKL þ ikbKGA�

�raðk2
aEI þ ikaTLÞ �rbðk2

bEI þ ikbTLÞ

 !
;

½þRL� ¼
½ðra þ 1ÞKL � ikaKGA� ½ðrb þ 1ÞKL � ikbKGA�

�raðk2
aEI � ikaTLÞ �rbðk2

bEI � ikbTLÞ

 !
: ð48bÞ

The wave-train closure principle yields

fI� ½RT�g þw
in
g

þw
out
g

 !�����
z¼Z

¼
0

0

 !
: ð49Þ

For superposed standing waves to exist, the following equation should be satisfied:

jI� ½RT�j ¼ 0: ð50Þ

Since the matrix I� ½RT� is no longer diagonal, Eq. (50) is a single equation that determines the
natural frequencies of the superposed standing waves. In reality, Eq. (49) represents a
compatibility condition of wave motion, i.e., the win- and the wout-waves have to fit together in
order to formulate a standing wave. As a result, Eq. (50) is different from the expression of wave-
train closure principle for a Euler–Bernoulli beam as presented by Mead [2], in which the wave-
train closure principle could be applied to either propagating waves (originated from the present
win-wave) or evanescent waves (originated from the present wout-wave) separately, leading to the
same frequency equation.
It should be noted that the Euler–Bernoulli beam model is an approximation to the

Timoshenko beam model by neglecting shear deformation and rotary inertia. Consequently, a
one-degree-of-freedom model, such as bending displacement motion only, is enough to describe
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beam vibration. The present wout-wave is no longer a different type of wave, but reduced, along
with the present win-wave, to a single wave. The wave then becomes a one-dimensional entity. The
compatibility condition of wave motion at the boundary is unnecessary since there is only one
single wave, thus there is no need for further consideration like that given in the present paper for
superposed standing waves. This is similar to the present case of single and degenerate standing
waves, for which the compatibility condition of wave motion is also unnecessary.
A case remaining to be discussed is the beam with one end elastically supported and the other

sliding or simply supported. For such a beam, at the specific frequency determined by the spring
constants of the elastic support, the waves are reflected at both ends in the degenerate state.
Degenerate standing waves are formulated, and the wave-train closure principle gives a condition
for the existence of such degenerate standing waves. At the frequencies other than the specific
frequency, the waves are reflected at the elastically supported boundary in the superposed state,
thus superposed standing waves are formulated. The wave-train closure principle gives natural
frequencies and mode shapes of such superposed standing waves.

5. Conclusions

Various vibration modes of a finite-length Timoshenko beam are studied using the wave-train
closure principle, with emphasis on the mechanism of the formulation of various vibration modes
in a beam, particularly, on the existence of degenerate modes. Flexural waves accommodated in
an infinite beam are investigated first. The role of shear deformation is studied by introducing a
novel wave entity, i.e., a displacement vector of bending and shear for these waves. It is
demonstrated that the shear displacement is either in-phase or out-of-phase with respect to the
bending displacement, leading to two types of flexural waves in an infinite beam, respectively.
They are the in-phase flexural wave (win-wave) and the out-of-phase flexural wave (wout-wave).
The two flexural waves are degenerate in an infinite beam.
The behavior of wave reflection at an elastically supported boundary is then studied. It is

demonstrated that the introduction of a boundary removes the degeneracy of the win- and the
wout-waves in general; the two waves have to be superposed upon reflection at the boundary. Wave
reflection at classical free or clamped boundaries belongs to this case also. Under exceptional
circumstances, either of these waves may be reflected at a boundary without inducing the other. In
this paper, they are then said to ‘‘remain degenerate’’. One is that these two waves are at a specific
frequency related to the spring constants of the elastic support, and the other is classical simply
supported or sliding boundary condition.
The wave-train closure principle is extended to a vector form for the finite-length Timoshenko

beam. Various wave reflection behavior results in three types of standing waves, namely,
superposed, degenerate, and single standing waves, in a finite-length Timoshenko beam. In general,
vibration modes in a Timoshenko beam are superposed standing waves. A compatibility
condition of wave motion should be satisfied in order to formulate superposed standing waves.
Degenerate standing waves can exist in several special cases. They include a beam with simply

supported and/or sliding boundary conditions and an elastically supported beam at the specific
frequency, provided that additional conditions are satisfied simultaneously. Apart from
degenerate standing waves, standing waves of another type are possible. They are termed as
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single standing waves or single modes, in the sense that each of them originates from either a win-
or a wout-wave but two such standing waves do not have the same natural frequency as degenerate
modes. For degenerate and single standing waves, the compatibility condition is satisfied
naturally.
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